-
i

); U 6’ ‘/_’ ‘.ﬁ

~
d
[A

i

Sy Sy

£

RSRE MEMORANDUNM No. 4185

UNLIMITED | CET0RARD

RSRE
MEMORANDUM No. 4195

ROYAL SIGNALS & RADAR
* ESTABLISHMENT

SPECIFICATION OF VIPER1 IN Z

Author: D H Kemp

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,

WORCS. DT‘C , “ |

IELE‘CTE' - |
Gy, 8 MAR 1988

b
UNLIMITED

89 3 08 27190

ROYAL SIGNALS AND RADAR ESTABLISHMENT
Memorandum 4195

Title

Specification of ViperlinZ

Accession Por
- Author ’Tns GRA&I § ‘
D.H. Kemp PTIC TAB

Unannounced
Justifisation
By.
Date Distribution/
September 1988 Availability Codes

Avall and/or
Dist Special

~
Ly \5 A:/

N,

_/"

N

Summary

The Viper]l microprocessor has already been specified mathematically in HOL. HOL, however,
is not well known outside the hardware verification community. This paper covers the specification
Viperl in the Z specification language. Various features of Viperl have been specified in Z which
did not occur in the top level HOL specification. It has not been possable 10 prove any
correspondence between this specification and the original HOL specification. The Work involved
in writing the Viper] specification has proved useful in writing the initial Viper2 specification. -

© Controller, HMSO 1988

1 Introduction

In safety critical systems the idea of diversity improving safety is well
established. Safety critical systems may employ a pumber of processors
independently executing algorithms which obey a common high level specification.

The same can be seen to be true in the specification and design of safety critical
systems. Just as there may be an error in a specific microprocessor, which could
cause one channel of a system to fail in service, there may be an error in a
specification. The chances of this escaping the notice of the designers is reduced by
specifying the system in more than one way. This is most effective when the two
specification systems are basically different in character. This means then that by
ensuring the sysiem conforms to both of the specifications the chance of an error
still being present is greatly reduced. Proofs of correspondence may then be
atternpted to establish that the two texts have the same meaning.

It was decided to specify Viperl in Z for a number of reasons. Firstly Z was

sufficiently different to the HOL specification! to give reasonable diversity. Z is also
more widely known in terms of software specification than HOL. Another advantage

of Z was the fact that it had been used by J.Bowen? to specify the M6800
microprocessor. A lot of the groundwork developed by Bowen in specifying a
microprocessor instruction set has been used in this specification. Finally at RSRE
there is 2 Z editor and type checker available for use on the PerqFlex system.

This report is the first attempt to specify Viperl in Z. It makes no attempt to
explain the primary constructs of Z, nor act as a tutorial in Z. Readers not familiar
with Z should consult reference 3. Although the specification has been type checked,
it has neither been proved to be equivelent to the HOL specification, nor free from
logical errors. Any inconsistencies or errors found in this document should be
reported back to the Computing Division at RSRE.

el A i R

2 Basic functions

2.1 Bits and Words

Initially the models sdopted to represent bits snd words need to be
defined, along with the relationships between these models snd the
natural numbers which they represent.

Bit e €0,1)

Word & { w:NewBit | >0 o dom w =0 .. (#(w) - 1))

Bits sre represented as the set of elements with values & or 1.
Words are represented as a set of partial functions from natural
numbers to Bits. The natural numbers correspond to the pos.tion of the
bit 1n the word, i1e the result of w(n) (the word w acting on the value

n) gives the ne1th Bt of the word w.

| LSB.MSB : Word —~ Bt

Y w: Word »
LSBw=uwl
MSB w = w -1

Find the most and least sign . fi.cant bits of the word.

val : Word ~ M
I

Y w: Word «
(#=]1) = (val w = LSB w)
(04>1) e (val w = LSB w + 2 # vallsucciul}

val returns the natural number represented by the word.Note succiw

gives the effect of a Right shift, ie divide by two, on the word. e
+f succiw is applied to n then first succ n is calculated. snd then w

of n+i is calculeted i1e the n+2th Bit is returned rather than the
n+1th one

pred : ~1 - N

Un: Ne.predn=n-~-1

Useful for left shifting (in @ similar way to the technique
descr ibed above).

l (_set_) : (WordxBit) — MWord
Yw: Word: b : Bit
wsetbs= ut((ﬂnb) (1wb)}

The set function returns a word which has all of its bits set to the
spec i fied velue.

I maxval : Word - N

B Word «
maxval w = val(n set 1)

~ (3 w: Word « ((val w) > maxval w))

Returns the maximum value which can be stored i1n the word.

Iurd:Nl-o(N-ol-lurd)

Ysize : Nl: valu ¢ N; w : Word »

(wrd size valu = W) o=
(tan = s128) A
(val w = valu mod succ(maxval w)J})

wrd returns the word of size s:ize and set to the value valu (unless
the word cannot hold that value). (note no algoerithm 1s given for
calculating wrd from its arguments. just the relationships which must
hold between the word returned and the i1nput arguments).

(_*_) : (Word=Word) - Word

Y wl.wZ @ Word «
Witw2 =Wl U (pred "1 ;2)

F
Y wl, w2 : Word o #(wl wd) = Ml + a2

Concatenste two words together.

2.2 Bitwise Functions
The definition of the basic logical functions.

not : Bit w Bit

not = {0wl,1.0}

Generste the logical inverse of the input bit.

(L) (_#_),(_o_) : (BitsBit)~Bit

(_4_) = €10,00m0.(0,1)=1,01,0)1,(1,1)m1}
(_o_) = €(0,0m0,(0,1)m1,(1,0)1,0(8,1m0}
(_e)= €00,0)a0,0,10m0,01.0)0,01,1)1}

Standard bitwise Jogical functioms. (note, . s, + 1s or and © is
exclusive or)

TR T T T T — -p -

2.3 Logical fuctions on words

The standard wordwise logical functions, 1e finding the logical AND
of two words.

I wnot : MWord s Word

¥ w: Word »
wWnot w = W 2 not

Gererate the inverse of the input word.
WordPair s

{w: N o (B1txBit) | w0 o dom w =0 .. ((wau)-1))

| (_pair_) : (Wordskord)—WordPar

Y wi.w2 : Word »

Wl pair w2 =
{1 : N] tedomul ndomw2 o« i = (Wl 1,2 1)}

Tekes 8 pair of words and represents them as a set of bit pairs.
indexed by a single natural number.

(_and_).(_or_),(_exor_) : (Word=Word)—Word

Y wl,wZ ¢ Word
wl and w2 = ((Wl pair W2) 3 (_._))

wl or W2 = ((Wl pair w2 3 3 (_*_))
wl exor w2 = ((wl pair w2) 3 (_o_))

Standard wordwise logical functions.

(_€<_) : {Word«Bst) - Word

Y w: Word: b : Bt »
w<ech = ({we) € (pred 3 w)) U {0=b)

(_>>_) : (Bitxkord) — Word

Y w: Word: b : Bit o
b > ws=z {((wu)-1) w b} VU (suce 3 W)

Shift right snd left while inserting & particular bit into the right
or left most position.

2.4 Arithmetic Functions

Next the mathematical functions must be defined. This includes
introducing integers (ie 2's complement notation), and standard
mathemat ical operations snd exceptions (for example add and cerry).

l value : Word — 2

1) A value w = val w ~ suce (maxval w 1) y
0) A value w = val w)

Return the integer value represented by the Word.This 1s using the
2's complemert notation. The most significant bit has a we:ghtinz of

-2"1, 8o to cope with negative numbers subtract 2".

maxpos .maxneg : Word - 2

U wl,wg @ Word | #ul €1 , #wZ = ((w])-1)
maxpos Wl = maxval w2

maxneg w1 = (maxval wZ2) - (maxval wl)

Return the maximum positive and negative numbers for a word of a
particular size.

(_signextend_) : (Hord-Nl) - Word

B wl,w2 : Word: length : N1 }

(length 2 #ul)a(mwZ = length) o
(w] signextend length) = (W2 set (MSB wl)) e wl

Sign Extend the word to the new word length.
(_pad_) : (Hord-Nl) — Word

Y wl.wg : Word: length : Nl |

(length 2 #ul) (#wZ = length)
(1] pad length) = (w2 set 0) o wi

Pad out @ word to the new word length with zeros.

| (_trim_) : (Hord-Nl) - Word

Y w : Word: length : "l | length € ®u «
wtrim length =(0 .. length) 4 w

Trim @ word down to the new word lensth.

o

I (_plus_) : (Word=Word) — Word

U Wl.w2 w3 @ Word | (M) = ((Wu23+41) o (#Z) =(043)

((wZ plus W3) = (Wl trom w2))
o (value wl)=(value w2)+(value w3)

Primitive addition. All that is checked for s that the input words
are of the same size. and that the output word is one bit larger, so
that carry can be detected. Word addition s defined in terms of
integer add tion, 1e addition per se i1s not defined.

(_minus_) : (Word=Word) -+ Word

U w12 w3 @ Word | (mal) = ((wZ)+]) o (#2) =(wu3' o

((eZ minus W3) = (Wl trim w2))
o« (value wl)=(value wZl-{value w3)

Subtraction 15 defined similarily to addition. note no checks for
overflow etc.

Y wi.,wg : Word | ol = w2 .

l (_carry_) : (Wordsblord) - Bt
]
l (W] carry w2 = 1) e ((val wl) + (val w2) > maxval w1)

Top level specification of carry, i1e @ carry i1s generated when the
add-téon result 1s lesrger than the maximum possible value which can be
stored.

| (_borrow_) : (WordxWord) — Bit

Y wl,w2 ¢ Word | #ul = w2 o
(]l borrow wZ = §) s ((val wl) € (val w2))

Top level spec of Borrow.

I (_overflow_) : (Wordslord) — Bit

U wlcwZ 2 Word | sul = w2 o
(W]l overflow w2 = 1) «e
((value w1) + (value w2) > maxpos wi) v
((value wl) + (value w2) <€ mexneg w2))

Top level spec of overflow. ie overflow when the sum s greater than
the lergest positive value which can be held, or less than the largest
negat ive number .

I (_underflow_) : (WordsWord) — Bit

Y wl, w2 : Word | #nl = m2 o
(] underflow w2 = 1) e
€ ((value wl) - (value w2) > maxpos wl) v
((value wl) - (velue w2) € maxneg w2))

Top level spec of overflow on subtraction

I (_equal_) : (WordsWord) — Bit

Y wl,wZ : Word | skl = w2 o
(n] equal w2 = 1) e (value wl = value w2)

Set to 1 if the two words have the same value (and 8 otherwise),
note they are not necessar . ly the same size of word.

I (_less_) : (Words=Word) — Bit

Y owl.wZ : Word | #ul = w2 o
(] Jess w2 =1) e» (value wl € value w2)

Set to ! f the first word s less than the second (and 9
otherwise), note they are not necessar:ly the same size of word.

This completes the underlying theory of representing natural number
arithmetc by operations on vectors of bits.

3 Viper Specifics
3.1 lord Lengths

These sre the spec i1 fic word sizes used

: Word | ®w = 32)

»
-~
z

Hofdaz
Hordzo e {w: Word | wa =20)
Wordg & { w: Word | W =4 }

: Word | ww =3 3}

»
-~
I

Horda

: MWord | ww =2)

»
-~
T

Hordz

Hordl g {w: Word | =1 1}

Address 2 Wordyg

Data & MWords,
Flag Y Hordl

in the Viperl processor.

for Data words

For Address words

For the function select

for the destinat ion select

for the reg:ster and memory

select

for the compar ison select

and flags

b ol PR

3.2 Memory

The definition of the Memory and Peripheral spaces, and the
behaviour of these tuwo regions.

_Memory

Mem t Address - Data
RAMspace : Address - Data
PERIspace : Address - Data
io : Bt

Cio D) =« (Mem = RAMspace)
(10 = 1) == (Mem = PERIspace)

rd

Tuwo regions of non overlapping address space RAM and PERIphe-al. 1ne
two types of memory totally cover the memory space.

AMemary

Memory
Memory’
4Mem : Address « Data

tio = 0) =s (Mem” = Mem o bMem:

1€ the location 1s i1n RAM then the address is updated. however with
PERIpheral space the values can change without any mod:ification from
the processor. No mention of the behaviour of the PERIpheral space s
given., because there 1s no way to model in general these very spec:fic
devices. The specifiction of the behaviour of these devices is left to
the system spec.:fication.

EMemory
AMemory

bMem = &

No change in memory.

3.3 Registers
The specification of the Viperl registers.
Registers
A : Wordy,
: Wordg,
: Hordaz
: Wordyy
: Wordy

'

@ VD < x

The five visible registers of the Viper. A an accumulator. X and Y
index registers P the program counter and B the boolean flag.

OReg sters e

Registers
Registers’
newp ! Address

—

Note. P' s always updated (unless machine has stopped).

_ =Registers _

ORegisters
A’ = A
X' =X
Y' =Y
8' =8B

1e no change.

. ————— —————

3.4 Clock
The existance of a clock was not represented in any manner in the
HOL spectfication of Viperl, but 1t is included here as a matter of
completeness.

Clock e

I Clk : N

Clock simply counts up from O.

_ &Clock

Clock
Clock"’
Cycles : N

——————————

Clk*

Cli + Cycles

Crcles is the number of cycles needed to complete the present
instruction. It 1s intended to include information about how many
cycles each instruction takes to complete in the schemas of the
individual instructions.

T

3.5 Stop

The definition of the stop flag and the way the processor behaves
when stopped and in the normal mode of operation.

StOP e
stop : Bit

:

Single Bit top determine whether the machine 1s stopped or not.

_45tap -
ORegisters
Stop
Stop’
sval : Bit

reset : Bit

stop =0

reset = §

stop’ = sval

newp = P plus (wrd 20 1)

Set the new value of the program counter and the stop b't for the
next state. The machine 1s not stopped. The parameter reset 15 the
reset line to the processor. It 1% treated as a synchronous reset, ie
it 1s only noticed at the start of an instruction.

. Stopped

SMemory
ZReg i sters
Stop

Stop’
8Clock
reset : Bt

stop =1
reset = 0
P’ =P

The machine has stopped. and cannot restart until there 1s @ Reset.

~ -—

3.6 Viper Stete

ViperOpCode

F-op : Wordgs
rsf : Word,
msf : Word,
dsf : Wordg
csf ¢ Hordl
fsf : Hord,
addr : uordzn
op = rsf ~ msf ° dsf ~ esf ~ fsf ~ addr

The Viperl Op code.The Op code is loaded n from the location
pointed to by the Program counter (P). The DOp code constists of six
fields. These are.

(1) The Register Select Field - This selects which of the four
registers are going to be used as inputs to the ALU.

(2) The Memory Select Field - This selects the addressing mode
for the operation.

(3) Destination Select Field - This selects the destination
Ee?ister for the result, and also whether the result is a Jump or a
a

(4) Comparison Select Field - This selects whether the operation
is a comparison (setting the B flag) or an arithmetic or logicai
function, returning a result. It is also used to distinguish between
Jump and Cell instructions.

(5) The Function Select Field - This determins the ARLU operation
for Comparisons or Arithmetic and Logical functions.

(B) The Address Field - The address used to pull in the second
operand from memory, or used as Jump address etc.

Ar 1thmet icAndlogicalUnit
result : Wordg,
offs Wordgy
r.m : Wordg,

The inputs and outputs to/from the ALU. r holds .he value from the
register, specified in the register select field of the Op code. which
is the first opersnd to the ALU. The parsmeter offs is the address of
the memory input to the ALU (or the sctusl input if the operstion is
in immediste eddressing mode). The parameter m 1s the sctual value
?"’lgh:ﬂmj?. second operand to the ALU.Finally result is the output

rom .

_.OViper

&Memor y

4Reg:sters

8Clock

AStop

ViperOpCode

Arithmet icAndlogicallnit
bval : Bit

op = Mem (P)

The Viper State. For the machine to change to a new state then the
machine must not be stopped.

EVIPEr ey

4V per
EMemory
ERegisters
AStop

Viper state unchanged (exept P updated)

Viper INIT ___
AViper
Clk’ = 0
stop’ = 0
val (P') =10
val (A")Y =0
val (X*) =10
val (Y') =0
val (B’) = 0
e e

Machine on start up.

_Reset _____

AMemor y
ORegisters
a8Clock
Stop’

reset : Bit

reset = 1
stop’ = 0
val (P’
val (A’
val (X’
val (Y’
val (B’

NN
oococoo

- e

Machine status on a Reset.
spec:fication

This was not represented

in the HOL

4 Viper Operations
4.1 ALU inputs
In this section the various inputs to the V:perl ALU are spec i1 fied.

RegisterSelect '
FAUnper

(val ref = 0) e (r = A)
(val rsf = 1) ee (r = X)
(val rsf = 2) e (r = Y)
(val rsf = 3) =s (r = P pad 32)

Select the register to be the r i1nput to the ALU.

Offset -
aViper

(val msf = 0) = (0ffs = addr pad 32)

(val msf = 1) = (0ffs = addr pad 32)

(val msf = 2) e (offs = (addr pad 32) plus X)
(val msf = 3) = (offs = (addr pad 323 plus Y)

Determine the address of second word to be input to the ALU.

F_ReadFromRRH
Of fset

~((val dsf = ?) y (val dsf = B6))
(vel fsf 2 2) v (val csf = 1)
io =0

Read in input to ALU from RAM. There 1s no read when ® write s
specified (ie if the dsf is 6 or 7)., there 1s also no read from RAM
when there 1s an input from PER]I space (ie if the fsf I1s two and the
csf is zero), finally the address of the locat:on to be read from must
be 1n the RAM space.

ReadFromPER]
rnffset

~((val dsf = ?) y (val dsf = 6))
val csf = 0

val fgf = 2

io = 1

Read in an input from the PERIpheral space.

Input & ReadFromRAM ReadFromPERI

__NilMemoryRead

Of fset
val fsf = 12
val csf = 0

~((val dsf = 6) v (val dsf = ?))

This is the case where there 1s to be no word read in from memory,
1e when the ALU function 1s @ shift operstion.

. Memor yRead
Offset

(val msf = 0)a(m = offs) v
(val msf = 0)a(m = Mem (offs trim 20))

ed

This 15 the case where the memory resd is to go shead 1f msf 15 O
then 1t 1s immediste addressing. otherwise get the value from the
location posinted 4o by offs.

MemRead # (N:lMemor yRead v = NilMemoryRead a MemoryRead) a Input

MemRead is erther ® nil memory read or a memory read.

4.

2 Write to memory

_Write

8V iper

val csf = 0
(val dsf = 6) vy (val dsf = ?)

Is the viper doing @ write operation to main memory or per pheral

space.

— Output
Dffset
(val dsf = Blalio = 1) y
(val dsf = ?)alio = 0)

Define the region of memory where the write

either

_Memur 1 te

is to take place., e
per ipheral or main memory.

Offset
RegisterSelect
Write

Output
ZRegisters

(val msf = 0)s(6Mem = {3)
(val msf = D) (6Mem = { (offs trim 20) wr })

Write

to main memory or per iphersl space.

Prary

4.3 [llegel Operstions
Illegal operations, which will cause an error.

l invalid : Word — Bit

U w: Word »
Cinvalid & = 1) e» (val w > maxval (wrd 20 0))

Function set true 1f the word cannot be held in a 20 bit word.

__Sparefunction

AV iper

val csf = 0
=((val dsf = 6) v (val dsf = 7))
(val fsf = 13) v (val fsf = 14) v (val fsf =15)

—

The Op code i1s accessing one of the three spare functions of the
Vipers ALU.

- IllegalCall
aViper

val csf = 0
val fsf = 1
(val dsf = 0) y (val dsf =1) y (val dsf = 2)

The ALU operation 1s @ Call, but the destination for the result s
set to A, X or Y.

__IllegalPDest ination

&V iper

val csf = 0
(vel dsf = 3) y (val dsf = 4) y (val dsf = 5)
~((vel fsf = 1)y(val fsf = 3)y(val fsf = S)y(val fsf = 7))

The destination for the result from the ALU 1s the Program counter.
However the ALU function 1s an illegal way of generating the new
Progrsm Counter value.

— Illegalirte _
Write

val msf = 0

The operation is a write. but immediate addressing has been
specified.

ik

_IllegalAddress
Offset

(val csf = 1)y(val fsf = 12)v(val dsf = Bly(val dsf = ?)
invalid offs

—

A memory location needs to be read, but the location to read from s
not s valid address.

__IllegalPIncrement _
oV iper

invalid newp

J

The Program Counter is to be incremented past the end of the address
space.
Error

r-ASwP
EViper

—

svel = 1
P’ = newp

e}

Machine must stop with all registers are as ther were previously.

Errors ¢ ((IllegalAddress v IllegalCall v Illesallrite
v IllesalPlncrement v Sparefunction
v IllegalPDestination)
A Error)

4.4 Comper ison Functions

__Compareframe

Res:isterSelect
MemRead

P’ = newp

AR' = A

X' =X

Y' =Y

Stem = ()

val csf = 1

This 1s the framing schema for compar ison operations. Rll registers
are unchanged except for the Program counter. B’ 1s set in the var.ious
compar isons below.

Compareframe

val fsf = 0
val B’ = (r less m)

)

__Grester ThanOrEqualTo __

Compareframe

vel fsf = |
val B' = not (r less m)

_EauslTo

Compar eFrame

val fsf = 2
val B' = (r equal m)

PNl:n_Ecu.ualTn R

Compar eframe

val fsf = 3
vsl B’ = not (r equal m)

LessThanOrEquslTo —
Compareframe

val fsf = 4
val B' = (r less m) ¢+ (r equal m)

. Greater Than

Compar eframe

val fsf = §
val B’ = not((r less m) + (r equal m))

_Uns i gnedLessThan

Compar efr ame

val fsf = B
val B = (r borrow m)

_Uns 1 gnedGreater ThanOrEqualTo

Compareframe

val fsf = 7?7
val B' = not(r borrow m)

_LessThanOrB
Compar eFrame

val fsf = B
val B' = (r less m) ¢+ val B

__Greater ThanOrEqualToOrB
Compareframe

val fsf = 9
vel B’ = not(r less m) + val B

. EqualTo0rB8
Compar ef r ame

val fsf = 10
val B’ = (r equal m) * val B

NotEqualToOrB

Compareframe

val fsf = 11
val B’ = not(r equal m) + val B

LessThanOrEqualToOrB8
r Compar efr ame

val fsf = 12
val B' = ({r less m) *+ (r equal m)) + val B

_Greater ThanOrB

Compareframe

val fsf = 13
val B' =not((r less m) *+ (r equal m) + val B)

UnsignedLessThanOrB

—————

-

Compareframe
val fsf = 14
val B' = (r borrow m) + val B

——d

’_Llns 1anedGr eater ThanOrEqualToOrB

Compar eframe
val fsf = 15
val B' = not (r borrou m) + val B

Compare & UnsignedGreater ThanDrEqualToOrB v LessThanOrB
v UnsignedlLessThanQrB v Greater ThanOrEqualToOrB
v Greater ThenOrB v EqualToOrB y UnsignedLessThan
v LessThanOrEqualToOrB v NotEqualToOrB v Greater Than
v UnsignedGrester ThanOrtqualTo v LessThanOrEqualTo
v NotEquaiTo v EqualTo y Greater ThanOrEqualTo
v LessThan

Compare i1s the d:sjunction of all of the basic compar ison schemas.

4.5 ALU Operstions

_ ALUframe

RegisterSelect
MemRead
Purite : Bit

(Purite=1) e+ ((val dsf=3)y(val dsf=%)y(val dsf=5))
val csf = 0

~((val dsf = 7) v (val dsf = 6))

Shem = ()

This 1s the framing schema for all of the ALU operations. Note
memory cannot be changed and 1t 1s not a comparison. Purite 1s 1 1f
the destination of the result i1s the Program counter.

- Negate o
ALUframe
val fsf = 0
result = wnot m
B' =8
sval = 0

Invert the input word.

_Call
ALUfr ame

val fsf = 1

result = m

P’ =m

A* A

X' X

Y' = newp

B’ =8

sval = not(Purite) + (invalid m)

3

Call a subroutine. Set Program counter to m, and leave the return
address in the Y register. Stop if there is a call to sn illegal
address or there is not a legal P destination.

. InputFromPERI _
ALUframe

val fsf = 2
result = m

B' =8

sval = 0

Input @ value from the PERIpheral space. Note o has slready been
sel to 1 in section 4.1 (ReadFromPER]).

T

__ReadFromMemory o
ALUframe

val fsf = 3

result = m

B' =8

sval=Purite . Cinvalid m)

3

Return the value in memory, ®nd stop if the location s not
memory space.

ReadOp & (InputfFromPER] v ReadFromMemory)

The two read operations, ie the ALU is transparent.

Unsignedfdd
ALUframe

——

val fsf = ¢

result = r plus m
val B' =r carry m
sval = 0

Add r to m. setting B if there is a Carry.

AddStopOnOver f low
ALUframe

val fsf = §

result = r plus m

B' =8

sval = (r overflow m) + (invalid(result) . Purite)

mn

Add r to m, stopping if there is an overflow, and setting B if there

is a Carry. .

_.UnsignedSubtrect __
ALUf rame

val fsf = 6

result = r minus m
val B' = r borrou m
sval = 0

4

Subtract m from r, and setting B 1f there is a Borrow.

T ——— -y

r_SubtractStopDnOverflou
ALUframe

val fsf = ?

result = r minus m

B' =8

sval = (r underflow m) + (invalid(result) . Purite)

J

Subtract m from r, stopping on overflow and setting B (f there 15 a
Borrow.

ArithmeticOp @ (UnsignedAdd v RddStopOnDverflow
v UnsignedSubtract v SubtractStopOnOverflow)

The four arithmetic operations.

_ExclusiveOr ______
ALUframe

val fsf = B8
result = r exor m
g’ =8B

sval = 0

Returns the Exclusive Dr of the two input words.

And
ALUframe

val fsf = 8
result =r and m
B’ =8

sval = 0

—

Returns the Logical and of the two inputs.

Nor

pae —

ALUframe

val fsf = 10

result = wnot(r or m)
B' =B

sval = 0

Returns the inverted or of the two inputs.

prere——yy T —— — -
)
'
y _. AndNot .
ALUframe
val fsf = 11
result = r and wnot (m)
8’ =8
sval = 0
Returns the logical and of the input register and the inverted
memory input.
f LogicalOp & (Negate v AndNot v Nor v And vy Exclusivelr)
' The five logical operators.
F_RruthmetucSmHR-ght -
ALUframe
val fsf = 12
val msf = 0
result = MSB r > r
B' =8
sval = 0
Artthmetic Shift Right, shifting in the MSB (ie s:19n) bit.
LogicalShiftRight __
ALUframe
val fsf = 12
val msf = 1
result = val B8 > r
val B' = {SB r
sval = 0
Logical Shift Right through the Boolean Flag B.
~ArithmeticShiftleft
ALUframe
val fsf = 12
val msf = 2
result = r plus r
B' =8
sval = (r overflow r)
Arithmetic Shift Left. Stopping the processor on overflow.
sl S S S

,_Losic.lShiftLeFt

—
ALUframe

val fsf = 12

val msf = 3

result = r << val B
val B' = MSB r

sval = 0

Logical Shift Left through the Boolean Flag B.

ShiftOp & (ArithmeticShiftRight v LogicalShiftRight
v Arithmet icShiftLeft v LogicalShiftLeft)

The four shift operations.

_UnusedFunctions
ALUframe

(val fsf = 13) vy (val fsf = 14) y (va]l fsf = 15)
result = r

B’ =8

sval = 1

The function called 1s one of the three unused functions in the
Viper ALU. This will cause the Viper to stop.

ALU & (ReadOp v ArithmeticOp
v LogicalOp v ShiftOp v UnusedFunctions)

The result from the ALU. is one of the above functional groups.

- ResultToA
ALUfr ame

vel dsf = 0
R' = result
X' =X

Y' =Y

P’ = newp
]

Store the result from the ALU in the A register.

—ResultToX ___

ALUframe

val dsf = 1

R' = A

X' = result

Y' =Y

P' = newp
_—

Store the result from the ALU in the X register.

_.ResultToY ___
ALUframe

val dsf = 2
A’ A

X' X

Y’ result
P’ newp

| S E—— |

Store the result from the ALU in the Y register.

Jume

ALUframe
val fsf » 1
A" = A
X' =X
Y=Y

' = result

Branch instruction (as opposed to a call) simply set the program

counter to be equal to the result from the ALU.

=Conditions
ALY

(vel dsf = 3
((val dsf =

)
4)a(val B=1))y
((vel dsf = S) a (val B = 0))

nd

The values of dsf for the various conditional jumps and caslls. For
the unconditional call dsf 1s 3, call on B set dsf is 4 and call on B

=0 is dsf equal to 5.

Destinstion 8 (ResultToR v ResultToX v ResultToY v
(Jump & Conditions))

ALUOp & (ALU A Destination) v (Call A Conditions)

_.NoOp

EViper

val csf = 0
(val dsf = S)s(val B = 1) ¢ (val dsf = 4)s(val B = 0)
P’ = newp .

T

4.6 Next Viper State

DKState @ ~ (Errors) A (Memurite v NoOp v Compare v ALUOp vy Reset)

NextState # (Errors v OKState v Stopped vy Reset)

The next state is one of four cases, it 1s either stopped or an
error in which case the next state will be stopped. or it will be a
reset and the next state will be the initial state. or it will
continue to work normally.

S Conclusions

The document gives an initial specification of Viperl in 2. It has
demonstrated that Z can give a higher level specification than the HOL
spec:fication. 2 has also been shown to be 8 useful language to
specify a microprocessor in.

Although this specification has been written some time after the
HOL specification, it wms still a worthuhile exercise. This
specification can be checked against the HOL version. The experience
gained has also been useful in specifying Viper2.

8§ Acknowlegements
W J Cullyer, C Pygott and J Kershaw for their help with the Viperl
and the HOL spec.
C O'Halleran for his help with the 2 editor and type checker.

S MWiseman for checking the specification. and suggesting
modifications.

? Referances

1. Bowen J. The Formal Specification of a Microprocessor
instruction set.

2. Cullyer W.J Viper Microprocessor:Formal Specification
RSRE Report No. B85@13 Octcber 1985.

3. Ian Hayes (editor) Specification Case Studies
Prentice-Hall international series in
computer science., 1987

DOCUMENT CONTROL SHEET

Overal) security classification of sheet . . UNCLASSIFIED. it e,

(As far as possible this sheet should contain only unclassified information, 1f it is necessary to enter
classified information, the box concerned sust be marked to indicate the classification eg (R} (C) or (S))

1. DRIC Reference (if known) | 2. Originator's Reference |3. Agency Reference 4, Report Security
Memorandum 4195 Unclassiffé?syhcahon
5. Originator's Code (if 6. Originator (Corporate Author) Nase and Location
knovn) Royal Signals and Radar Establishment
7784000 St Andrews Road, Malvern, Worcestershire WR14 3PS
5a. Sponsoring Agency's ba. Sponsoring Agency (Contract Authority) Mame and Location

Code (i f knoun)

7. Title
SPECIFICATION OF VIPER! IN Z

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

B. Author 1 Surname, initials| 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref
Kemp DH 1988.9 34
11. Contract Number 12, Period 13, Project 14, Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate piece of paper

Abstract

The Viper1 microprocessor has already been specified mathematically in HOL. HOL,
however, is not well known outside the hardware verification community. This
paper covers the specification Viper1! in the Z specification language. Various
features of Viper! have been specified in Z which did not occur in the top level
HOL specification. It has not been possible to prove any correspondence between
this specification and the original HOL specification. The work involved in
writing the Viper! specification has proved useful in writing the initial Viper2
specification.

$80/48

Py

